1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! Animated values.
//!
//! Some values, notably colors, cannot be interpolated directly with their
//! computed values and need yet another intermediate representation. This
//! module's raison d'être is to ultimately contain all these types.

use app_units::Au;
use euclid::{Point2D, Size2D};
use smallvec::SmallVec;
use std::cmp::max;
use values::computed::Angle as ComputedAngle;
use values::computed::BorderCornerRadius as ComputedBorderCornerRadius;
#[cfg(feature = "servo")]
use values::computed::ComputedUrl;
use values::computed::GreaterThanOrEqualToOneNumber as ComputedGreaterThanOrEqualToOneNumber;
use values::computed::MaxLength as ComputedMaxLength;
use values::computed::MozLength as ComputedMozLength;
use values::computed::NonNegativeLength as ComputedNonNegativeLength;
use values::computed::NonNegativeLengthOrPercentage as ComputedNonNegativeLengthOrPercentage;
use values::computed::NonNegativeNumber as ComputedNonNegativeNumber;
use values::computed::PositiveInteger as ComputedPositiveInteger;
use values::specified::url::SpecifiedUrl;

pub mod color;
pub mod effects;

/// Animate from one value to another.
///
/// This trait is derivable with `#[derive(Animate)]`. The derived
/// implementation uses a `match` expression with identical patterns for both
/// `self` and `other`, calling `Animate::animate` on each fields of the values.
/// If a field is annotated with `#[animation(constant)]`, the two values should
/// be equal or an error is returned.
///
/// If a variant is annotated with `#[animation(error)]`, the corresponding
/// `match` arm is not generated.
///
/// If the two values are not similar, an error is returned unless a fallback
/// function has been specified through `#[animate(fallback)]`.
pub trait Animate: Sized {
    /// Animate a value towards another one, given an animation procedure.
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()>;
}

/// An animation procedure.
///
/// <https://drafts.csswg.org/web-animations/#procedures-for-animating-properties>
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Procedure {
    /// <https://drafts.csswg.org/web-animations/#animation-interpolation>
    Interpolate { progress: f64 },
    /// <https://drafts.csswg.org/web-animations/#animation-addition>
    Add,
    /// <https://drafts.csswg.org/web-animations/#animation-accumulation>
    Accumulate { count: u64 },
}

/// Conversion between computed values and intermediate values for animations.
///
/// Notably, colors are represented as four floats during animations.
///
/// This trait is derivable with `#[derive(ToAnimatedValue)]`.
pub trait ToAnimatedValue {
    /// The type of the animated value.
    type AnimatedValue;

    /// Converts this value to an animated value.
    fn to_animated_value(self) -> Self::AnimatedValue;

    /// Converts back an animated value into a computed value.
    fn from_animated_value(animated: Self::AnimatedValue) -> Self;
}

/// Marker trait for computed values with the same representation during animations.
pub trait AnimatedValueAsComputed {}

/// Returns a value similar to `self` that represents zero.
///
/// This trait is derivable with `#[derive(ToAnimatedValue)]`. If a field is
/// annotated with `#[animation(constant)]`, a clone of its value will be used
/// instead of calling `ToAnimatedZero::to_animated_zero` on it.
///
/// If a variant is annotated with `#[animation(error)]`, the corresponding
/// `match` arm is not generated.
pub trait ToAnimatedZero: Sized {
    /// Returns a value that, when added with an underlying value, will produce the underlying
    /// value. This is used for SMIL animation's "by-animation" where SMIL first interpolates from
    /// the zero value to the 'by' value, and then adds the result to the underlying value.
    ///
    /// This is not the necessarily the same as the initial value of a property. For example, the
    /// initial value of 'stroke-width' is 1, but the zero value is 0, since adding 1 to the
    /// underlying value will not produce the underlying value.
    fn to_animated_zero(&self) -> Result<Self, ()>;
}

impl Procedure {
    /// Returns this procedure as a pair of weights.
    ///
    /// This is useful for animations that don't animate differently
    /// depending on the used procedure.
    #[inline]
    pub fn weights(self) -> (f64, f64) {
        match self {
            Procedure::Interpolate { progress } => (1. - progress, progress),
            Procedure::Add => (1., 1.),
            Procedure::Accumulate { count } => (count as f64, 1.),
        }
    }
}

/// <https://drafts.csswg.org/css-transitions/#animtype-number>
impl Animate for i32 {
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        Ok(((*self as f64).animate(&(*other as f64), procedure)? + 0.5).floor() as i32)
    }
}

/// <https://drafts.csswg.org/css-transitions/#animtype-number>
impl Animate for f32 {
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        use std::f32;

        let ret = (*self as f64).animate(&(*other as f64), procedure)?;
        Ok(ret.min(f32::MAX as f64).max(f32::MIN as f64) as f32)
    }
}

/// <https://drafts.csswg.org/css-transitions/#animtype-number>
impl Animate for f64 {
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        use std::f64;

        let (self_weight, other_weight) = procedure.weights();

        let ret = *self * self_weight + *other * other_weight;
        Ok(ret.min(f64::MAX).max(f64::MIN))
    }
}

impl<T> Animate for Option<T>
where
    T: Animate,
{
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        match (self.as_ref(), other.as_ref()) {
            (Some(ref this), Some(ref other)) => Ok(Some(this.animate(other, procedure)?)),
            (None, None) => Ok(None),
            _ => Err(()),
        }
    }
}

impl Animate for Au {
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        Ok(Au::new(self.0.animate(&other.0, procedure)?))
    }
}

impl<T> Animate for Size2D<T>
where
    T: Animate + Copy,
{
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        Ok(Size2D::new(
            self.width.animate(&other.width, procedure)?,
            self.height.animate(&other.height, procedure)?,
        ))
    }
}

impl<T> Animate for Point2D<T>
where
    T: Animate + Copy,
{
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        Ok(Point2D::new(
            self.x.animate(&other.x, procedure)?,
            self.y.animate(&other.y, procedure)?,
        ))
    }
}

impl<T> ToAnimatedValue for Option<T>
where
    T: ToAnimatedValue,
{
    type AnimatedValue = Option<<T as ToAnimatedValue>::AnimatedValue>;

    #[inline]
    fn to_animated_value(self) -> Self::AnimatedValue {
        self.map(T::to_animated_value)
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated.map(T::from_animated_value)
    }
}

impl<T> ToAnimatedValue for Vec<T>
where
    T: ToAnimatedValue,
{
    type AnimatedValue = Vec<<T as ToAnimatedValue>::AnimatedValue>;

    #[inline]
    fn to_animated_value(self) -> Self::AnimatedValue {
        self.into_iter().map(T::to_animated_value).collect()
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated.into_iter().map(T::from_animated_value).collect()
    }
}

impl<T> ToAnimatedValue for SmallVec<[T; 1]>
where
    T: ToAnimatedValue,
{
    type AnimatedValue = SmallVec<[T::AnimatedValue; 1]>;

    #[inline]
    fn to_animated_value(self) -> Self::AnimatedValue {
        self.into_iter().map(T::to_animated_value).collect()
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated.into_iter().map(T::from_animated_value).collect()
    }
}

impl AnimatedValueAsComputed for Au {}
impl AnimatedValueAsComputed for ComputedAngle {}
impl AnimatedValueAsComputed for SpecifiedUrl {}
#[cfg(feature = "servo")]
impl AnimatedValueAsComputed for ComputedUrl {}
impl AnimatedValueAsComputed for bool {}
impl AnimatedValueAsComputed for f32 {}

impl<T> ToAnimatedValue for T
where
    T: AnimatedValueAsComputed,
{
    type AnimatedValue = Self;

    #[inline]
    fn to_animated_value(self) -> Self {
        self
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated
    }
}

impl ToAnimatedValue for ComputedNonNegativeNumber {
    type AnimatedValue = Self;

    #[inline]
    fn to_animated_value(self) -> Self {
        self
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated.0.max(0.).into()
    }
}

impl ToAnimatedValue for ComputedGreaterThanOrEqualToOneNumber {
    type AnimatedValue = Self;

    #[inline]
    fn to_animated_value(self) -> Self {
        self
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated.0.max(1.).into()
    }
}

impl ToAnimatedValue for ComputedNonNegativeLength {
    type AnimatedValue = Self;

    #[inline]
    fn to_animated_value(self) -> Self {
        self
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        ComputedNonNegativeLength::new(animated.px().max(0.))
    }
}

impl ToAnimatedValue for ComputedPositiveInteger {
    type AnimatedValue = Self;

    #[inline]
    fn to_animated_value(self) -> Self {
        self
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        max(animated.0, 1).into()
    }
}

impl ToAnimatedValue for ComputedNonNegativeLengthOrPercentage {
    type AnimatedValue = Self;

    #[inline]
    fn to_animated_value(self) -> Self {
        self
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated.0.clamp_to_non_negative().into()
    }
}

impl ToAnimatedValue for ComputedBorderCornerRadius {
    type AnimatedValue = Self;

    #[inline]
    fn to_animated_value(self) -> Self {
        self
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        ComputedBorderCornerRadius::new((animated.0).0.width.clamp_to_non_negative(),
                                        (animated.0).0.height.clamp_to_non_negative())
    }
}

impl ToAnimatedValue for ComputedMaxLength {
    type AnimatedValue = Self;

    #[inline]
    fn to_animated_value(self) -> Self {
        self
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        use values::computed::{Length, LengthOrPercentageOrNone, Percentage};
        match animated {
            ComputedMaxLength::LengthOrPercentageOrNone(lopn) => {
                let result = match lopn {
                    LengthOrPercentageOrNone::Length(px) => {
                        LengthOrPercentageOrNone::Length(Length::new(px.px().max(0.)))
                    },
                    LengthOrPercentageOrNone::Percentage(percentage) => {
                        LengthOrPercentageOrNone::Percentage(Percentage(percentage.0.max(0.)))
                    }
                    _ => lopn
                };
                ComputedMaxLength::LengthOrPercentageOrNone(result)
            },
            _ => animated
        }
    }
}

impl ToAnimatedValue for ComputedMozLength {
    type AnimatedValue = Self;

    #[inline]
    fn to_animated_value(self) -> Self {
        self
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        use values::computed::{Length, LengthOrPercentageOrAuto, Percentage};
        match animated {
            ComputedMozLength::LengthOrPercentageOrAuto(lopa) => {
                let result = match lopa {
                    LengthOrPercentageOrAuto::Length(px) => {
                        LengthOrPercentageOrAuto::Length(Length::new(px.px().max(0.)))
                    },
                    LengthOrPercentageOrAuto::Percentage(percentage) => {
                        LengthOrPercentageOrAuto::Percentage(Percentage(percentage.0.max(0.)))
                    }
                    _ => lopa
                };
                ComputedMozLength::LengthOrPercentageOrAuto(result)
            },
            _ => animated
        }
    }
}

impl ToAnimatedZero for Au {
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> { Ok(Au(0)) }
}

impl ToAnimatedZero for f32 {
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> { Ok(0.) }
}

impl ToAnimatedZero for f64 {
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> { Ok(0.) }
}

impl ToAnimatedZero for i32 {
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> { Ok(0) }
}

impl<T> ToAnimatedZero for Option<T>
where
    T: ToAnimatedZero,
{
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        match *self {
            Some(ref value) => Ok(Some(value.to_animated_zero()?)),
            None => Ok(None),
        }
    }
}