1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
pub use core_foundation_sys::array::*;
pub use core_foundation_sys::base::{CFIndex, CFRelease};
use core_foundation_sys::base::{CFTypeRef, kCFAllocatorDefault};
use base::CFType;
use libc::c_void;
use std::mem;
use std::marker::PhantomData;
use base::{CFIndexConvertible, TCFType, CFRange};
pub struct CFArray<T = *const c_void>(CFArrayRef, PhantomData<T>);
pub unsafe trait FromVoid {
unsafe fn from_void(x: *const c_void) -> Self;
}
unsafe impl FromVoid for u32 {
unsafe fn from_void(x: *const c_void) -> u32 {
x as usize as u32
}
}
unsafe impl FromVoid for *const c_void {
unsafe fn from_void(x: *const c_void) -> *const c_void {
x
}
}
unsafe impl FromVoid for CFType {
unsafe fn from_void(x: *const c_void) -> CFType {
TCFType::wrap_under_get_rule(mem::transmute(x))
}
}
impl<T> Drop for CFArray<T> {
fn drop(&mut self) {
unsafe {
CFRelease(self.as_CFTypeRef())
}
}
}
pub struct CFArrayIterator<'a, T: 'a> {
array: &'a CFArray<T>,
index: CFIndex,
}
impl<'a, T: FromVoid> Iterator for CFArrayIterator<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
if self.index >= self.array.len() {
None
} else {
let value = self.array.get(self.index);
self.index += 1;
Some(value)
}
}
}
impl<'a, T: FromVoid> ExactSizeIterator for CFArrayIterator<'a, T> {
fn len(&self) -> usize {
(self.array.len() - self.index) as usize
}
}
impl_TCFTypeGeneric!(CFArray, CFArrayRef, CFArrayGetTypeID);
impl_CFTypeDescriptionGeneric!(CFArray);
impl<T> CFArray<T> {
pub fn from_CFTypes<R>(elems: &[T]) -> CFArray<T> where T: TCFType<R> {
unsafe {
let elems: Vec<CFTypeRef> = elems.iter().map(|elem| elem.as_CFTypeRef()).collect();
let array_ref = CFArrayCreate(kCFAllocatorDefault,
mem::transmute(elems.as_ptr()),
elems.len().to_CFIndex(),
&kCFTypeArrayCallBacks);
TCFType::wrap_under_create_rule(array_ref)
}
}
#[deprecated(note = "please use `as_untyped` instead")]
pub fn to_untyped(self) -> CFArray {
unsafe { CFArray::wrap_under_get_rule(self.0) }
}
pub fn as_untyped(&self) -> CFArray {
unsafe { CFArray::wrap_under_get_rule(self.0) }
}
#[inline]
pub fn iter<'a>(&'a self) -> CFArrayIterator<'a, T> {
CFArrayIterator {
array: self,
index: 0
}
}
#[inline]
pub fn len(&self) -> CFIndex {
unsafe {
CFArrayGetCount(self.0)
}
}
#[inline]
pub fn get(&self, index: CFIndex) -> T where T: FromVoid {
assert!(index < self.len());
unsafe { T::from_void(CFArrayGetValueAtIndex(self.0, index)) }
}
pub fn get_values(&self, range: CFRange) -> Vec<*const c_void> {
let mut vec = Vec::with_capacity(range.length as usize);
unsafe {
CFArrayGetValues(self.0, range, vec.as_mut_ptr());
vec.set_len(range.length as usize);
vec
}
}
pub fn get_all_values(&self) -> Vec<*const c_void> {
self.get_values(CFRange {
location: 0,
length: self.len()
})
}
}
impl<'a, T: FromVoid> IntoIterator for &'a CFArray<T> {
type Item = T;
type IntoIter = CFArrayIterator<'a, T>;
fn into_iter(self) -> CFArrayIterator<'a, T> {
self.iter()
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::mem;
#[test]
fn to_untyped_correct_retain_count() {
let array = CFArray::<CFType>::from_CFTypes(&[]);
assert_eq!(array.retain_count(), 1);
let untyped_array = array.to_untyped();
assert_eq!(untyped_array.retain_count(), 1);
}
#[test]
fn as_untyped_correct_retain_count() {
let array = CFArray::<CFType>::from_CFTypes(&[]);
assert_eq!(array.retain_count(), 1);
let untyped_array = array.as_untyped();
assert_eq!(array.retain_count(), 2);
assert_eq!(untyped_array.retain_count(), 2);
mem::drop(array);
assert_eq!(untyped_array.retain_count(), 1);
}
#[test]
fn should_box_and_unbox() {
use number::CFNumber;
let n0 = CFNumber::from(0);
let n1 = CFNumber::from(1);
let n2 = CFNumber::from(2);
let n3 = CFNumber::from(3);
let n4 = CFNumber::from(4);
let n5 = CFNumber::from(5);
let arr = CFArray::from_CFTypes(&[
n0.as_CFType(),
n1.as_CFType(),
n2.as_CFType(),
n3.as_CFType(),
n4.as_CFType(),
n5.as_CFType(),
]);
assert!(arr.get_all_values() == &[n0.as_CFTypeRef(),
n1.as_CFTypeRef(),
n2.as_CFTypeRef(),
n3.as_CFTypeRef(),
n4.as_CFTypeRef(),
n5.as_CFTypeRef()]);
unsafe {
let mut sum = 0;
let mut iter = arr.iter();
assert_eq!(iter.len(), 6);
assert!(iter.next().is_some());
assert_eq!(iter.len(), 5);
for elem in iter {
let number: CFNumber = TCFType::wrap_under_get_rule(mem::transmute(elem));
sum += number.to_i64().unwrap()
}
assert!(sum == 15);
for elem in arr.iter() {
let number: CFNumber = TCFType::wrap_under_get_rule(mem::transmute(elem));
sum += number.to_i64().unwrap()
}
assert!(sum == 30);
}
}
}